Перевод: с английского на все языки

со всех языков на английский

using experiments

  • 1 the numerical experiments were performed using ...

      • проводились численные эксперименты с использованием...

    English-Russian dictionary of phrases and cliches for a specialist researcher > the numerical experiments were performed using ...

  • 2 experimental

    adjective
    1) experimentell; Experimental[physik, -psychologie]; Experimentier[theater]; Versuchs[labor, -bedingungen]; Versuchs[tier]

    at the/an experimental stageim Versuchsstadium

    2) (fig.): (tentative) vorläufig
    * * *
    [-'mentl]
    adjective (of, or used for an experiment: experimental teaching methods.) experimentell
    * * *
    ex·peri·men·tal
    [ɪkˌsperɪˈmentəl, ekˌ-, AM esp ekˌ-]
    1. (for experiment) Versuchs-
    \experimental conditions pl Versuchsbedingungen pl
    \experimental game Planspiel nt
    \experimental laboratory Versuchslabor nt
    to be still at the \experimental stage sich akk noch im Versuchsstadium befinden
    2. (using experiments) experimentell, Experimentier-
    \experimental physics Experimentalphysik f fachspr
    \experimental psychology experimentelle Psychologie fachspr
    \experimental researcher Experimentalforscher(in) m(f)
    \experimental theatre Experimentiertheater nt fachspr
    to be purely \experimental rein experimentell sein
    3. ( fig: provisional) vorläufig
    on an \experimental basis versuchsweise
    * * *
    [Ik"sperɪ'mentl]
    adj (ALSO SCI, MED, TECH ETC)
    experimentell

    /cinema — Experimentiertheater nt/-kino nt

    experimental physics/psychology — Experimentalphysik f/-psychologie f

    experimental laboratory/period — Versuchslabor nt/-zeit f

    he argued for an experimental lifting of the baner argumentierte dafür, das Verbot versuchsweise aufzuheben

    * * *
    experimental [ekˌsperıˈmentl; ık-] adj (adv academic.ru/25765/experimentally">experimentally)
    1. Versuchs…, experimentell, Experimental…:
    experimental animal Versuchstier n;
    experimental engineer TECH Versuchsingenieur(in);
    experimental farm landwirtschaftliche Experimentierstation;
    experimental physics pl (als sg konstruiert) Experimentalphysik f;
    experimental psychology Experimentalpsychologie f;
    experimental station Versuchs-, Experimentierstation f;
    experimental theater (bes Br theatre) experimentelles Theater; stage A 8
    2. experimentierfreudig
    exp. abk
    1. expenses pl
    * * *
    adjective
    1) experimentell; Experimental[physik, -psychologie]; Experimentier[theater]; Versuchs[labor, -bedingungen]; Versuchs[tier]

    at the/an experimental stage — im Versuchsstadium

    2) (fig.): (tentative) vorläufig
    * * *
    adj.
    experimentell adj.

    English-german dictionary > experimental

  • 3 experimental

    ex·peri·men·tal [ɪk ˌsperɪʼmentəl, ek ˌ-, Am esp ek ˌ-] adj
    1) ( for experiment) Versuchs-;
    \experimental laboratory Versuchslabor nt;
    to be still at the \experimental stage sich akk noch im Versuchsstadium befinden
    2) ( using experiments) experimentell, Experimentier-;
    \experimental physics Experimentalphysik f fachspr;
    \experimental psychology experimentelle Psychologie fachspr;
    \experimental researcher Experimentalforscher(in) m(f);
    \experimental theatre Experimentiertheater nt fachspr;
    to be purely \experimental rein experimentell sein;
    3) (fig: provisional) vorläufig;
    on an \experimental basis versuchsweise

    English-German students dictionary > experimental

  • 4 Talbot, William Henry Fox

    [br]
    b. 11 February 1800 Melbury, England
    d. 17 September 1877 Lacock, Wiltshire, England
    [br]
    English scientist, inventor of negative—positive photography and practicable photo engraving.
    [br]
    Educated at Harrow, where he first showed an interest in science, and at Cambridge, Talbot was an outstanding scholar and a formidable mathematician. He published over fifty scientific papers and took out twelve English patents. His interests outside the field of science were also wide and included Assyriology, etymology and the classics. He was briefly a Member of Parliament, but did not pursue a parliamentary career.
    Talbot's invention of photography arose out of his frustrating attempts to produce acceptable pencil sketches using popular artist's aids, the camera discura and camera lucida. From his experiments with the former he conceived the idea of placing on the screen a paper coated with silver salts so that the image would be captured chemically. During the spring of 1834 he made outline images of subjects such as leaves and flowers by placing them on sheets of sensitized paper and exposing them to sunlight. No camera was involved and the first images produced using an optical system were made with a solar microscope. It was only when he had devised a more sensitive paper that Talbot was able to make camera pictures; the earliest surviving camera negative dates from August 1835. From the beginning, Talbot noticed that the lights and shades of his images were reversed. During 1834 or 1835 he discovered that by placing this reversed image on another sheet of sensitized paper and again exposing it to sunlight, a picture was produced with lights and shades in the correct disposition. Talbot had discovered the basis of modern photography, the photographic negative, from which could be produced an unlimited number of positives. He did little further work until the announcement of Daguerre's process in 1839 prompted him to publish an account of his negative-positive process. Aware that his photogenic drawing process had many imperfections, Talbot plunged into further experiments and in September 1840, using a mixture incorporating a solution of gallic acid, discovered an invisible latent image that could be made visible by development. This improved calotype process dramatically shortened exposure times and allowed Talbot to take portraits. In 1841 he patented the process, an exercise that was later to cause controversy, and between 1844 and 1846 produced The Pencil of Nature, the world's first commercial photographically illustrated book.
    Concerned that some of his photographs were prone to fading, Talbot later began experiments to combine photography with printing and engraving. Using bichromated gelatine, he devised the first practicable method of photo engraving, which was patented as Photoglyphic engraving in October 1852. He later went on to use screens of gauze, muslin and finely powdered gum to break up the image into lines and dots, thus anticipating modern photomechanical processes.
    Talbot was described by contemporaries as the "Father of Photography" primarily in recognition of his discovery of the negative-positive process, but he also produced the first photomicrographs, took the first high-speed photographs with the aid of a spark from a Leyden jar, and is credited with proposing infra-red photography. He was a shy man and his misguided attempts to enforce his calotype patent made him many enemies. It was perhaps for this reason that he never received the formal recognition from the British nation that his family felt he deserved.
    [br]
    Principal Honours and Distinctions
    FRS March 1831. Royal Society Rumford Medal 1842. Grand Médaille d'Honneur, L'Exposition Universelle, Paris, 1855. Honorary Doctorate of Laws, Edinburgh University, 1863.
    Bibliography
    1839, "Some account of the art of photographic drawing", Royal Society Proceedings 4:120–1; Phil. Mag., XIV, 1839, pp. 19–21.
    8 February 1841, British patent no. 8842 (calotype process).
    1844–6, The Pencil of Nature, 6 parts, London (Talbot'a account of his invention can be found in the introduction; there is a facsimile edn, with an intro. by Beamont Newhall, New York, 1968.
    Further Reading
    H.J.P.Arnold, 1977, William Henry Fox Talbot, London.
    D.B.Thomas, 1964, The First Negatives, London (a lucid concise account of Talbot's photograph work).
    J.Ward and S.Stevenson, 1986, Printed Light, Edinburgh (an essay on Talbot's invention and its reception).
    H.Gernsheim and A.Gernsheim, 1977, The History of Photography, London (a wider picture of Talbot, based primarily on secondary sources).
    JW

    Biographical history of technology > Talbot, William Henry Fox

  • 5 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 6 Artificial Intelligence

       In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)
       Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)
       Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....
       When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)
       4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, Eventually
       Just as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)
       Many problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)
       What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)
       [AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)
       The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)
       9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract Form
       The basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)
       There are many different kinds of reasoning one might imagine:
        Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."
        Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)
       Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)
       Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)
       The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)
        14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory Formation
       It is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)
       We might distinguish among four kinds of AI.
       Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.
       Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.
    ... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)
       Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)
        16) Determination of Relevance of Rules in Particular Contexts
       Even if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)
       Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)
        18) The Assumption That the Mind Is a Formal System
       Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)
        19) A Statement of the Primary and Secondary Purposes of Artificial Intelligence
       The primary goal of Artificial Intelligence is to make machines smarter.
       The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)
       The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....
       AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)
        21) Perceptual Structures Can Be Represented as Lists of Elementary Propositions
       In artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)
       Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)
       Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)
       The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)

    Historical dictionary of quotations in cognitive science > Artificial Intelligence

  • 7 Montgolfier, Joseph-Michel

    SUBJECT AREA: Aerospace
    [br]
    b. 26 August 1740 Vidalon-lès-Annonay, France
    d. 26 June 1810 Balaruc-les-Bains, France
    [br]
    French ballooning pioneer who, with his brother Jacques-Etienne (b. 6 January 1745 Vidalon-lès-Annonay, France; d. 2 August 1799, Serriers, France), built the first balloon to carry passengers on a "free" flight.
    [br]
    Joseph-Michel and Jacques-Etienne Montgolfier were papermakers of Annonay, near Lyon. Joseph made the first experiments' after studying smoke rising from a fire and assuming that the smoke contained a gas which was lighter than air: of course, this lighter-than-air gas was just hot air. Using fine silk he made a small balloon with an aperture in its base, then, by burning paper beneath this aperture, he filled the balloon with hot air and it rose to the ceiling. Jacques-Etienne joined his brother in further experiments and they progressed to larger hot-air balloons until, by October 1783, they had constructed one large enough to lift two men on tethered ascents. In the same month Joseph-Michel delivered a paper at the University of Lyon on his experiments for a propulsive system by releasing gas through an opening in the side of a balloon; unfortunately, there was not enough pressurefor an effective jet. Then, on 21 November 1783, the scientist Pilâtre de Rozier and the Marquis d'Arlandes ascended on a "free" flight in a Montgolfier balloon. They departed from the grounds of a château in the Bois de Boulogne in Paris on what was to be the world's first aerial journey, covering 9 km (5/2 miles) in 25 minutes.
    Ballooning became a popular spectacle with initial rivalry between the hot-air Montgolfières and the hydrogen-filled Charlières of J.A.C. Charles. Interest in hot-air balloons subsided, but was revived in the 1960s by an American, Paul E. Yost. His propane-gas burner to provide hot-air was a great advance on the straw-burning fire-basket of the Montgolfiers.
    [br]
    Principal Honours and Distinctions
    Légion d'honneur.
    Further Reading
    C.C.Gillispie, 1983, The Montgolfier Brothers and the Invention of Aviation 1783–1784, Princeton, NJ (one of the publications to commemorate the bicentenary of the Montgolfiers).
    L.T.C.Rolt, 1966, The Aeronauts, London (describes the history of balloons). C.Dollfus, 1961, Balloons, London.
    JDS

    Biographical history of technology > Montgolfier, Joseph-Michel

  • 8 Chappe, Claude

    SUBJECT AREA: Telecommunications
    [br]
    b. 25 December 1763 Brulon, France
    d. 23 January 1805 Paris, France
    [br]
    French engineer who invented the semaphore visual telegraph.
    [br]
    Chappe began his studies at the Collège de Joyeuse, Rouen, and completed them at La Flèche. He was educated for the church with the intention of becoming an Abbé Commendataire, but this title did not in fact require him to perform any religious duties. He became interested in natural science and amongst other activities he carried out experiments with electrically charged soap bubbles.
    When the bénéfice was suppressed in 1781 he returned home and began to devise a system of telegraphic communication. With the help of his three brothers, particularly Abraham, and using an old idea, in 1790 he made a visual telegraph with suspended pendulums to relay coded messages over a distance of half a kilometre. Despite public suspicion and opposition, he presented the idea to the Assemblée Nationale on 22 May 1792. No doubt due to the influence of his brother, Ignace, a member of the Assemblée Nationale, the idea was favourably received, and on 1 April 1793 it was referred to the National Convention as being of military importance. As a result, Chappe was given the title of Telegraphy Engineer and commissioned to construct a semaphore (Gk. bearing a sign) link between Paris and Lille, a distance of some 240 km (150 miles), using twenty-two towers. Each station contained two telescopes for observing the adjacent towers, and each semaphore consisted of a central beam supporting two arms, whose positions gave nearly two hundred possible arrangements. Hence, by using a code book as a form of lookup table, Chappe was able to devise a code of over 8,000 words. The success of the system for communication during subsequent military conflicts resulted in him being commissioned to extend it with further links, a work that was continued by his brothers after his suicide during a period of illness and depression. Providing as it did an effective message speed of several thousand kilometres per hour, the system remained in use until the mid-nineteenth century, by which time the electric telegraph had become well established.
    [br]
    Further Reading
    R.Appleyard, 1930, Pioneers of Electrical Communication.
    International Telecommunications Union, 1965, From Semaphore to Satellite, Geneva.
    KF

    Biographical history of technology > Chappe, Claude

  • 9 Clerke, Sir Clement

    SUBJECT AREA: Metallurgy
    [br]
    d. 1693
    [br]
    English entrepreneur responsible, with others, for attempts to introduce coal-fired smelting of lead and, later, of copper.
    [br]
    Clerke, from Launde Abbey in Leicestershire, was involved in early experiments to smelt lead using coal fuel, which was believed to have been located on the Leicestershire-Derbyshire border. Concurrently, Lord Grandison was financing experiments at Bristol for similar purposes, causing the downfall of an earlier unsuccessful patented method before securing his own patent in 1678. In that same year Clerke took over management of the Bristol works, claiming the ability to secure financial return from Grandison's methods. Financial success proved elusive, although the technical problems of adapting the reverberatory furnace to coal fuel appear to have been solved when Clerke was found to have established another lead works nearby on his own account. He was forced to cease work on lead in 1684 in respect of Grandison's patent rights. Clerke then turned to investigations into the coal-fired smelting of other metals and started to smelt copper in coal-fired reverberatory furnaces. By 1688–9 small supplied of merchantable copper were offered for sale in London in order to pay his workers, possibly because of further financial troubles. The practical success of his smelting innovation is widely acknowledged to have been the responsibility of John Coster and, to a smaller extent, Gabriel Wayne, both of whom left Clerke and set up separate works elsewhere. Clerke's son Talbot took over administration of his father's works, which declined still further and closed c. 1693, at about the time of Sir Clement's death. Both Coster and Wayne continued to develop smelting techniques, establishing a new British industry in the smelting of copper with coal.
    [br]
    Principal Honours and Distinctions
    Created baronet 1661.
    Further Reading
    Rhys Jenkins, 1934, "The reverberatory furnace with coal fuel", Transactions of the Newcomen Society 34:67–81.
    —1943–4, "Copper smelting in England: Revival at the end of the seventeenth century", Transactions of the Newcomen Society 24:78–80.
    J.Morton, 1985, The Rise of the Modern Copper and Brass Industry: 1690 to 1750, unpublished PhD thesis, University of Birmingham, 87–106.
    JD

    Biographical history of technology > Clerke, Sir Clement

  • 10 Davenport, Thomas

    SUBJECT AREA: Electricity
    [br]
    b. 9 July 1802 Williamstown, Vermont, USA
    d. 6 July 1851 Salisbury, Vermont, USA
    [br]
    American craftsman and inventor who constructed the first rotating electrical machines in the United States.
    [br]
    When he was 14 years old Davenport was apprenticed to a blacksmith for seven years. At the close of his apprenticeship in 1823 he opened a blacksmith's shop in Brandon, Vermont. He began experimenting with electromagnets after observing one in use at the Penfield Iron Works at Crown Point, New York, in 1831. He saw the device as a possible source of power and by July 1834 had constructed his first electric motor. Having totally abandoned his regular business, Davenport built and exhibited a number of miniature machines; he utilized an electric motor to propel a model car around a circular track in 1836, and this became the first recorded instance of an electric railway. An application for a patent and a model were destroyed in a fire at the United States Patent Office in December 1836, but a second application was made and Davenport received a patent the following year for Improvements in Propelling Machinery by Magnetism and Electromagnetism. A British patent was also obtained. A workshop and laboratory were established in New York, but Davenport had little financial backing for his experiments. He built a total of over one hundred motors but was defeated by the inability to obtain an inexpensive source of power. Using an electric motor of his own design to operate a printing press in 1840, he undertook the publication of a journal, The Electromagnet and Mechanics' Intelligencer. This was the first American periodical on electricity, but it was discontinued after a few issues. In failing health he retired to Vermont where in the last year of his life he continued experiments in electromagnetism.
    [br]
    Bibliography
    1837, US patent no. 132, "Improvements in Propelling Machinery by Magnetism and Electromagnetism".
    6 June 1837 British patent no. 7,386.
    Further Reading
    F.L.Pope, 1891, "Inventors of the electric motor with special reference to the work of Thomas Davenport", Electrical Engineer, 11:1–5, 33–9, 65–71, 93–8, 125–30 (the most comprehensive account).
    Annals of Electricity (1838) 2:257–64 (provides a description of Davenport's motor).
    W.J.King, 1962, The Development of Electrical Technology in the 19th Century, Washington, DC: Smithsonian Institution, Paper 28, pp. 263–4 (a short account).
    GW

    Biographical history of technology > Davenport, Thomas

  • 11 Miller, Patrick

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1731 Glasgow, Scotland
    d. 9 December 1815 Dalswinton, Dumfriesshire, Scotland
    [br]
    Scottish merchant and banker, early experimenter in powered navigation and in ship form.
    [br]
    In his own words, Patrick Miller was "without a sixpence" in his early youth; this is difficult to prove one way or another as he ended his life as Director and Deputy Governor of the Bank of Scotland. One thing is clear however, that from his earliest days, in common with most of his counterparts of the late eighteenth century, he was interested in experimental and applied science. Having acquired a substantial income from other sources, Miller was able to indulge his interest in ships and engineering. His first important vessel was the trimaran Edinburgh, designed by him and launched at Leith in 1786. Propulsion was man-powered using paddle wheels positioned in the spaces between the outer and central hulls. This led to several trials of similar craft on the Forth in the 1780s, and ultimately to the celebrated Dalswinton Loch trials. In 1785 Miller had purchased the Dumfriesshire estate of Dalswinton and commenced a series of experiments on agricultural development and other matters. With the help of William Symington he built a double-hull steamship with internal paddle wheels which was tested on the Loch in 1788. The 7.6 m (25 ft) long ship travelled at 5 mph (8 km/h) on her trials, and according to unsubstantiated tradition carried a group of well-known people including the poet Robert Burns (1759–1796).
    Miller carried out many more important experiments and in 1796 obtained a patent for the design of shallow-drafted ships able to carry substantial cargo on flat bottoms. His main achievement may have been to stimulate William Symington, who at the beginning of the nineteenth century went on to design and build two of the world's first important steamships, each named Charlotte Dundas, for service on the Forth and Clyde Canal.
    [br]
    Further Reading
    H.Philip Spratt, 1958, The Birth of the Steamboat, London: Griffiths. W.S.Harvey and G.Downs-Rose, 1980, William Symington, Inventor and Engine
    Builder, London: Northgate.
    F.M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Miller, Patrick

  • 12 Niepce de St Victor, Claude Félix Abel

    [br]
    b. 1805 Saint-Cyr, France
    d. 1870 France
    [br]
    French soldier and photographic scientist, inventor of the first practicable glass negative process.
    [br]
    A cousin of the photographic pioneer J.N. Niepce, he attended the military school of Saumur, graduating in 1827. Niepce de St Victor had wide scientific interests, but came to photography indirectly from experiments he made on fading dyes in military uniforms. He was transferred to the Paris Municipal Guard in 1845 and was able to set up a chemical laboratory to conduct research. From photographic experiments performed in his spare time, Niepce de St Victor devised the first practicable photographic process on glass in 1847. Using albumen derived from the white of eggs as a carrier for silver iodide, he prepared finely detailed negatives which produced positive prints far sharper than those made with the paper negatives of Talbot's calotype process. Exposure times were rather long, however, and the albumen-negative process was soon displaced by the wet-collodion process introduced in 1851, although albumen positives on glass continued to be used for high-quality stereoscopic views and lantern slides. In 1851 Niepce de St Victor described a photographic colour process, and between 1853 and 1855 he developed his famous cousin's bitumen process into a practicable means of producing photographically derived printing plates. He then went on to investigate the use of uranium salts in photography. He presented twenty-six papers to the Académie des Sciences between 1847 and 1862.
    [br]
    Bibliography
    1847, Comptes Rendus 25(25 October):586 (describes his albumen-on-glass process).
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E.Epstean, New York (provides details of his contributions to photography).
    JW

    Biographical history of technology > Niepce de St Victor, Claude Félix Abel

  • 13 Seguin, Marc

    [br]
    b. 20 April 1786 Annonay, Ardèche, France
    d. 24 February 1875 Annonay, Ardèche, France
    [br]
    French engineer, inventor of multi-tubular firetube boiler.
    [br]
    Seguin trained under Joseph Montgolfier, one of the inventors of the hot-air balloon, and became a pioneer of suspension bridges. In 1825 he was involved in an attempt to introduce steam navigation to the River Rhône using a tug fitted with a winding drum to wind itself upstream along a cable attached to a point on the bank, with a separate boat to transfer the cable from point to point. The attempt proved unsuccessful and was short-lived, but in 1825 Seguin had decided also to seek a government concession for a railway from Saint-Etienne to Lyons as a feeder of traffic to the river. He inspected the Stockton \& Darlington Railway and met George Stephenson; the concession was granted in 1826 to Seguin Frères \& Ed. Biot and two steam locomotives were built to their order by Robert Stephenson \& Co. The locomotives were shipped to France in the spring of 1828 for evaluation prior to construction of others there; each had two vertical cylinders, one each side between front and rear wheels, and a boiler with a single large-diameter furnace tube, with a watertube grate. Meanwhile, in 1827 Seguin, who was still attempting to produce a steamboat powerful enough to navigate the fast-flowing Rhône, had conceived the idea of increasing the heating surface of a boiler by causing the hot gases from combustion to pass through a series of tubes immersed in the water. He was soon considering application of this type of boiler to a locomotive. He applied for a patent for a multi-tubular boiler on 12 December 1827 and carried out numerous experiments with various means of producing a forced draught to overcome the perceived obstruction caused by the small tubes. By May 1829 the steam-navigation venture had collapsed, but Seguin had a locomotive under construction in the workshops of the Lyons-Sain t- Etienne Railway: he retained the cylinder layout of its Stephenson locomotives, but incorporated a boiler of his own design. The fire was beneath the barrel, surrounded by a water-jacket: a single large flue ran towards the front of the boiler, whence hot gases returned via many small tubes through the boiler barrel to a chimney above the firedoor. Draught was provided by axle-driven fans on the tender.
    Seguin was not aware of the contemporary construction of Rocket, with a multi-tubular boiler, by Robert Stephenson; Rocket had its first trial run on 5 September 1829, but the precise date on which Seguin's locomotive first ran appears to be unknown, although by 20 October many experiments had been carried out upon it. Seguin's concept of a multi-tubular locomotive boiler therefore considerably antedated that of Henry Booth, and his first locomotive was completed about the same date as Rocket. It was from Rocket's boiler, however, rather than from that of Seguin's locomotive, that the conventional locomotive boiler was descended.
    [br]
    Bibliography
    February 1828, French patent no. 3,744 (multi-tubular boiler).
    1839, De l'Influence des chemins de fer et de l'art de les tracer et de les construire, Paris.
    Further Reading
    F.Achard and L.Seguin, 1928, "Marc Seguin and the invention of the tubular boiler", Transactions of the Newcomen Society 7 (traces the chronology of Seguin's boilers).
    ——1928, "British railways of 1825 as seen by Marc Seguin", Transactions of the Newcomen Society 7.
    J.B.Snell, 1964, Early Railways, London: Weidenfeld \& Nicolson.
    J.-M.Combe and B.Escudié, 1991, Vapeurs sur le Rhône, Lyons: Presses Universitaires de Lyon.
    PJGR

    Biographical history of technology > Seguin, Marc

  • 14 Braun, Karl Ferdinand

    [br]
    b. 6 June 1850 Fulda, Hesse, Germany
    d. 20 April 1918 New York City, New York, USA
    [br]
    German physicist who shared with Marconi the 1909 Nobel Prize for Physics for developments in wireless telegraphy; inventor of the cathode ray oscilloscope.
    [br]
    After obtaining degrees from the universities of Marburg and Berlin (PhD) and spending a short time as Headmaster of the Thomas School in Berlin, Braun successively held professorships in theoretical physics at the universities of Marburg (1876), Strasbourg (1880) and Karlsruhe (1883) before becoming Professor of Experimental Physics at Tübingen in 1885 and Director and Professor of Physics at Strasbourg in 1895.
    During this time he devised experimental apparatus to determine the dielectric constant of rock salt and developed the Braun high-tension electrometer. He also discovered that certain mineral sulphide crystals would only conduct electricity in one direction, a rectification effect that made it possible to detect and demodulate radio signals in a more reliable manner than was possible with the coherer. Primarily, however, he was concerned with improving Marconi's radio transmitter to increase its broadcasting range. By using a transmitter circuit comprising a capacitor and a spark-gap, coupled to an aerial without a spark-gap, he was able to obtain much greater oscillatory currents in the latter, and by tuning the transmitter so that the oscillations occupied only a narrow frequency band he reduced the interference with other transmitters. Other achievements include the development of a directional aerial and the first practical wavemeter, and the measurement in Strasbourg of the strength of radio waves received from the Eiffel Tower transmitter in Paris. For all this work he subsequently shared with Marconi the 1909 Nobel Prize for Physics.
    Around 1895 he carried out experiments using a torsion balance in order to measure the universal gravitational constant, g, but the work for which he is probably best known is the addition of deflecting plates and a fluorescent screen to the Crooke's tube in 1897 in order to study the characteristics of high-frequency currents. The oscilloscope, as it was called, was not only the basis of a now widely used and highly versatile test instrument but was the forerunner of the cathode ray tube, or CRT, used for the display of radar and television images.
    At the beginning of the First World War, while in New York to testify in a patent suit, he was trapped by the entry of the USA into the war and remained in Brooklyn with his son until his death.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics (jointly with Marconi) 1909.
    Bibliography
    1874, "Assymetrical conduction of certain metal sulphides", Pogg. Annal. 153:556 (provides an account of the discovery of the crystal rectifier).
    1897, "On a method for the demonstration and study of currents varying with time", Wiedemann's Annalen 60:552 (his description of the cathode ray oscilloscope as a measuring tool).
    Further Reading
    K.Schlesinger \& E.G.Ramberg, 1962, "Beamdeflection and photo-devices", Proceedings of the Institute of Radio Engineers 50, 991.
    KF

    Biographical history of technology > Braun, Karl Ferdinand

  • 15 Campbell-Swinton, Alan Archibald

    [br]
    b. 18 October 1863 Kimmerghame, Berwickshire, Scotland
    d. 19 February 1930 London, England
    [br]
    Scottish electrical engineer who correctly predicted the development of electronic television.
    [br]
    After a time at Cargilfield Trinity School, Campbell-Swinton went to Fettes College in Edinburgh from 1878 to 1881 and then spent a year abroad in France. From 1882 until 1887 he was employed at Sir W.G.Armstrong's works in Elswick, Newcastle, following which he set up his own electrical contracting business in London. This he gave up in 1904 to become a consultant. Subsequently he was an engineer with many industrial companies, including the W.T.Henley Telegraph Works Company, Parson Marine Steam Turbine Company and Crompton Parkinson Ltd, of which he became a director. During this time he was involved in electrical and scientific research, being particularly associated with the development of the Parson turbine.
    In 1903 he tried to realize distant electric vision by using a Braun oscilloscope tube for the. image display, a second tube being modified to form a synchronously scanned camera, by replacing the fluorescent display screen with a photoconductive target. Although this first attempt at what was, in fact, a vidicon camera proved unsuccessful, he was clearly on the right lines and in 1908 he wrote a letter to Nature with a fairly accurate description of the principles of an all-electronic television system using magnetically deflected cathode ray tubes at the camera and receiver, with the camera target consisting of a mosaic of photoconductive elements that were scanned and discharged line by line by an electron beam. He expanded on his ideas in a lecture to the Roentgen Society, London, in 1911, but it was over twenty years before the required technology had advanced sufficiently for Shoenberg's team at EMI to produce a working system.
    [br]
    Principal Honours and Distinctions
    FRS (Member of Council 1927 and 1929). Freeman of the City of London. Liveryman of Goldsmiths' Company. First President, Wireless Society 1920–1. Vice-President, Royal Society of Arts, and Chairman of Council 1917–19,1920–2. Chairman, British Scientific Research Association. Vice-President, British Photographic Research Association. Member of the Broadcasting Board 1924. Vice-President, Roentgen Society 1911–12. Vice-President, Institution of Electrical Engineers 1921–5. President, Radio Society of Great Britain 1913–21. Manager, Royal Institution 1912–15.
    Bibliography
    1908, Nature 78:151; 1912, Journal of the Roentgen Society 8:1 (both describe his original ideas for electronic television).
    1924, "The possibilities of television", Wireless World 14:51 (gives a detailed description of his proposals, including the use of a threestage valve video amplifier).
    1926, Nature 118:590 (describes his early experiments of 1903).
    Further Reading
    The Proceedings of the International Conference on the History of Television. From Early Days to the Present, November 1986, Institution of Electrical Engineers Publication No. 271 (a report of some of the early developments in television). A.A.Campbell-Swinton FRS 1863–1930, Royal Television Society Monograph, 1982, London (a biography).
    KF

    Biographical history of technology > Campbell-Swinton, Alan Archibald

  • 16 Darby, Abraham

    SUBJECT AREA: Metallurgy
    [br]
    b. 1678 near Dudley, Worcestershire, England
    d. 5 May 1717 Madely Court, Coalbrookdale, Shropshire, England
    [br]
    English ironmaster, inventor of the coke smelting of iron ore.
    [br]
    Darby's father, John, was a farmer who also worked a small forge to produce nails and other ironware needed on the farm. He was brought up in the Society of Friends, or Quakers, and this community remained important throughout his personal and working life. Darby was apprenticed to Jonathan Freeth, a malt-mill maker in Birmingham, and on completion of his apprenticeship in 1699 he took up the trade himself in Bristol. Probably in 1704, he visited Holland to study the casting of brass pots and returned to Bristol with some Dutch workers, setting up a brassworks at Baptist Mills in partnership with others. He tried substituting cast iron for brass in his castings, without success at first, but in 1707 he was granted a patent, "A new way of casting iron pots and other pot-bellied ware in sand without loam or clay". However, his business associates were unwilling to risk further funds in the experiments, so he withdrew his share of the capital and moved to Coalbrookdale in Shropshire. There, iron ore, coal, water-power and transport lay close at hand. He took a lease on an old furnace and began experimenting. The shortage and expense of charcoal, and his knowledge of the use of coke in malting, may well have led him to try using coke to smelt iron ore. The furnace was brought into blast in 1709 and records show that in the same year it was regularly producing iron, using coke instead of charcoal. The process seems to have been operating successfully by 1711 in the production of cast-iron pots and kettles, with some pig-iron destined for Bristol. Darby prospered at Coalbrookdale, employing coke smelting with consistent success, and he sought to extend his activities in the neighbourhood and in other parts of the country. However, ill health prevented him from pursuing these ventures with his previous energy. Coke smelting spread slowly in England and the continent of Europe, but without Darby's technological breakthrough the ever-increasing demand for iron for structures and machines during the Industrial Revolution simply could not have been met; it was thus an essential component of the technological progress that was to come.
    Darby's eldest son, Abraham II (1711–63), entered the Coalbrookdale Company partnership in 1734 and largely assumed control of the technical side of managing the furnaces and foundry. He made a number of improvements, notably the installation of a steam engine in 1742 to pump water to an upper level in order to achieve a steady source of water-power to operate the bellows supplying the blast furnaces. When he built the Ketley and Horsehay furnaces in 1755 and 1756, these too were provided with steam engines. Abraham II's son, Abraham III (1750–89), in turn, took over the management of the Coalbrookdale works in 1768 and devoted himself to improving and extending the business. His most notable achievement was the design and construction of the famous Iron Bridge over the river Severn, the world's first iron bridge. The bridge members were cast at Coalbrookdale and the structure was erected during 1779, with a span of 100 ft (30 m) and height above the river of 40 ft (12 m). The bridge still stands, and remains a tribute to the skill and judgement of Darby and his workers.
    [br]
    Further Reading
    A.Raistrick, 1989, Dynasty of Iron Founders, 2nd edn, Ironbridge Gorge Museum Trust (the best source for the lives of the Darbys and the work of the company).
    H.R.Schubert, 1957, History of the British Iron and Steel Industry AD 430 to AD 1775, London: Routledge \& Kegan Paul.
    LRD

    Biographical history of technology > Darby, Abraham

  • 17 Nobel, Alfred Bernhard

    [br]
    b. 21 October 1833 Stockholm, Sweden
    d. 10 December 1896 San Remo, Italy
    [br]
    Swedish industrialist, inventor of dynamite, founder of the Nobel Prizes.
    [br]
    Alfred's father, Immanuel Nobel, builder, industrialist and inventor, encouraged his sons to follow his example of inventiveness. Alfred's education was interrupted when the family moved to St Petersburg, but was continued privately and was followed by a period of travel. He thus acquired a good knowledge of chemistry and became an excellent linguist.
    During the Crimean War, Nobel worked for his father's firm in supplying war materials. The cancellation of agreements with the Russian Government at the end of the war bankrupted the firm, but Alfred and his brother Immanuel continued their interest in explosives, working on improved methods of making nitroglycerine. In 1863 Nobel patented his first major invention, a detonator that introduced the principle of detonation by shock, by using a small charge of nitroglycerine in a metal cap with detonating or fulminating mercury. Two years later Nobel set up the world's first nitroglycerine factory in an isolated area outside Stockholm. This led to several other plants and improved methods for making and handling the explosive. Yet Nobel remained aware of the dangers of liquid nitroglycerine, and after many experiments he was able in 1867 to take out a patent for dynamite, a safe, solid and pliable form of nitroglycerine, mixed with kieselguhr. At last, nitroglycerine, discovered by Sobrero in 1847, had been transformed into a useful explosive; Nobel began to promote a worldwide industry for its manufacture. Dynamite still had disadvantages, and Nobel continued his researches until, in 1875, he achieved blasting gelatin, a colloidal solution of nitrocellulose (gun cotton) in nitroglycerine. In many ways it proved to be the ideal explosive, more powerful than nitroglycerine alone, less sensitive to shock and resistant to moisture. It was variously called Nobel's Extra Dynamite, blasting gelatin and gelignite. It immediately went into production.
    Next, Nobel sought a smokeless powder for military purposes, and in 1887 he obtained a nearly smokeless blasting powder using nitroglycerine and nitrocellulose with 10 per cent camphor. Finally, a progressive, smokeless blasting powder was developed in 1896 at his San Remo laboratory.
    Nobel's interests went beyond explosives into other areas, such as electrochemistry, optics and biology; his patents amounted to 355 in various countries. However, it was the manufacture of explosives that made him a multimillionaire. At his death he left over £2 million, which he willed to funding awards "to those who during the preceding year, shall have conferred the greatest benefit on mankind".
    [br]
    Bibliography
    1875, On Modern Blasting Agents, Glasgow (his only book).
    Further Reading
    H.Schuck et al., 1962, Nobel, the Man and His Prizes, Amsterdam.
    E.Bergengren, 1962, Alfred Nobel, the Man and His Work, London and New York (includes a supplement on the prizes and the Nobel institution).
    LRD

    Biographical history of technology > Nobel, Alfred Bernhard

  • 18 Strutt, Jedediah

    SUBJECT AREA: Textiles
    [br]
    b. 26 July 1726 South Normanton, near Alfreton, Derbyshire, England
    d. 7 May 1797 Derby, England
    [br]
    English inventor of a machine for making ribbed knitting.
    [br]
    Jedediah Strutt was the second of three sons of William, a small farmer and maltster at South Normanton, near Alfreton, Derbyshire, where the only industry was a little framework knitting. At the age of 14 Jedediah was apprenticed to Ralph Massey, a wheelwright near Derby, and lodged with the Woollats, whose daughter Elizabeth he later married in 1755. He moved to Leicester and in 1754 started farming at Blackwell, where an uncle had died and left him the stock on his farm. It was here that he made his knitting invention.
    William Lee's knitting machine remained in virtually the same form as he left it until the middle of the eighteenth century. The knitting industry moved away from London into the Midlands and in 1730 a Nottingham workman, using Indian spun yarn, produced the first pair of cotton hose ever made by mechanical means. This industry developed quickly and by 1750 was providing employment for 1,200 frameworkers using both wool and cotton in the Nottingham and Derby areas. It was against this background that Jedediah Strutt obtained patents for his Derby rib machine in 1758 and 1759.
    The machine was a highly ingenious mechanism, which when placed in front of an ordinary stocking frame enabled the fashionable ribbed stockings to be made by machine instead of by hand. To develop this invention, he formed a partnership first with his brother-in-law, William Woollat, and two leading Derby hosiers, John Bloodworth and Thomas Stamford. This partnership was dissolved in 1762 and another was formed with Woollat and the Nottingham hosier Samuel Need. Strutt's invention was followed by a succession of innovations which enabled framework knitters to produce almost every kind of mesh on their machines. In 1764 the stocking frame was adapted to the making of eyelet holes, and this later lead to the production of lace. In 1767 velvet was made on these frames, and two years later brocade. In this way Strutt's original invention opened up a new era for knitting. Although all these later improvements were not his, he was able to make a fortune from his invention. In 1762 he was made a freeman of Nottingham, but by then he was living in Derby. His business at Derby was concerned mainly with silk hose and he had a silk mill there.
    It was partly his need for cotton yarn and partly his wealth which led him into partnership with Richard Arkwright, John Smalley and David Thornley to exploit Arkwright's patent for spinning cotton by rollers. Together with Samuel Need, they financed the Arkwright partnership in 1770 to develop the horse-powered mill in Nottingham and then the water-powered mill at Cromford. Strutt gave advice to Arkwright about improving the machinery and helped to hold the partnership together when Arkwright fell out with his first partners. Strutt was also involved, in London, where he had a house, with the parliamentary proceedings over the passing of the Calico Act in 1774, which opened up the trade in British-manufactured all-cotton cloth.
    In 1776 Strutt financed the construction of his own mill at Helper, about seven miles (11 km) further down the Derwent valley below Cromford. This was followed by another at Milford, a little lower on the river. Strutt was also a partner with Arkwright and others in the mill at Birkacre, near Chorley in Lancashire. The Strutt mills were developed into large complexes for cotton spinning and many experiments were later carried out in them, both in textile machinery and in fireproof construction for the mills themselves. They were also important training schools for engineers.
    Elizabeth Strutt died in 1774 and Jedediah never married again. The family seem to have lived frugally in spite of their wealth, probably influenced by their Nonconformist background. He had built a house near the mills at Milford, but it was in his Derby house that Jedediah died in 1797. By the time of his death, his son William had long been involved with the business and became a more important cotton spinner than Jedediah.
    [br]
    Bibliography
    1758. British patent no. 722 (Derby rib machine). 1759. British patent no. 734 (Derby rib machine).
    Further Reading
    For the involvement of Strutt in Arkwright's spinning ventures, there are two books, the earlier of which is R.S.Fitton and A.P.Wadsworth, 1958, The Strutts and the Arkwrights, 1758–1830, Manchester, which has most of the details about Strutt's life. This has been followed by R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester.
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (for a general background to the textile industry of the period).
    W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867) (covers Strutt's knitting inventions).
    RLH

    Biographical history of technology > Strutt, Jedediah

  • 19 Albert, Wilhelm August Julius

    [br]
    b. 24 January 1787 Hannover, Germany
    d. 4 July 1846 Clausthal, Harz, Germany
    [br]
    German mining official, successful applier of wire cable.
    [br]
    After studying law at the University of Göttingen, Albert turned to the mining industry and in 1806 started his career in mining administration in the Harz district, where he became Chief Inspector of mines thirty years later. His influence on the organization of the mining industry was considerable and he contributed valuable ideas for the development of mining technology. For example, he initiated experiments with Reichenbach's water-column pump in Harz when it had been working successfully in the transportation of brine in Bavaria, and he encouraged Dörell to work on his miner's elevator.
    The increasing depths of shafts in the Harz district brought problems with hoisting as the ropes became too heavy and tended to break. At the beginning of the nineteenth century, iron link chains replaced the hempen ropes which were expensive and wore out too quickly, especially in the wet conditions in the shafts. After he had experimented for six years using counterbalancing iron link chains, which broke too easily, in 1834 he conceived the idea of producing stranded cables from iron wires. Their breaking strength and flexibility depended greatly on the softness of the iron and the way of laying the strands. Albert produced the cable by attaching the wires to strings which he turned evenly; this method became known as "Albert lay". He was not the first to conceive the idea of metal cables: there exists evidence for such cables as far back as Pompeii; Leonardo da Vinci made sketches of cables made from brass wires; and in 1780 the French engineer Reignier applied iron cables for lightning conductors. The idea also developed in various other mining areas, but Albert cables were the first to gain rapidly direct common usage worldwide.
    [br]
    Bibliography
    1835, "Die Anfertigung von Treibseilen aus geflochtenem Eisendraht", Karstens Archiv 8: 418–28.
    Further Reading
    K.Karmarsch, "W.A.J.Albert", Allgemeine deutsche Biographie 1:212–3.
    W.Bornhardt, 1934, W.A.J.Albert und die Erfindung der Eisendrahtseile, Berlin (a detailed description of his inventions, based on source material).
    C.Bartels, 1992, Vom frühneuzeitlichen Montangewerbe zur Bergbauindustrie, Bochum: Deut sches Bergbau-Museum (evaluates his achievements within the framework of technological development in the Harz mining industry).
    WK

    Biographical history of technology > Albert, Wilhelm August Julius

  • 20 Archer, Frederick Scott

    [br]
    b. 1813 Bishops Stortford, Hertfordshire, England
    d. May 1857 London, England
    [br]
    English photographer, inventor of the wet-collodion process, the dominant photographic process between 1851 and c.1880.
    [br]
    Apprenticed to a silversmith in London, Archer's interest in coin design and sculpture led to his taking up photography in 1847. Archer began experiments to improve Talbot's calotype process and by 1848 he was investigating the properties of a newly discovered material, collodion, a solution of gun-cotton in ether. In 1851 Archer published details of a process using collodion on glass plates as a carrier for silver salts. The process combined the virtues of both the calotype and the daguerreotype processes, then widely practised, and soon displaced them from favour. Collodion plates were only sensitive when moist and it was therefore essential to use them immediately after they had been prepared. Popularly known as "wet plate" photography, it became the dominant photographic process for thirty years.
    Archer introduced other minor photographic innovations and in 1855 patented a collodion stripping film. He had not patented the wet-plate process, however, and made no financial gain from his photographic work. He died in poverty in 1857, a matter of some embarrassment to his contemporaries. A subscription fund was raised, to which the Government was subsequently persuaded to add an annual pension.
    [br]
    Bibliography
    1851, Chemist (March) (announced Archer's process).
    Further Reading
    J.Werge, 1890, The Evolution of Photography.
    H.Gernsheim and A.Gernsheim, 1969, The History of "Photography", rev. edn, London.
    JW

    Biographical history of technology > Archer, Frederick Scott

См. также в других словарях:

  • Experiments and Observations on Different Kinds of Air — (1774–86) is a six volume work published by eighteenth century British polymath Joseph Priestley which reports a series of his experiments on airs or gases, most notably his discovery of oxygen gas (which he called dephlogisticated air ).… …   Wikipedia

  • List of experiments — See also: timeline of scientific experiments and list of famous discoveries The following is a list of historically important scientific experiments. A historic scientific experiment is one which demonstrates something of great scientific… …   Wikipedia

  • Timeline of scientific experiments — The timeline below shows the date of publication of major scientific experiments. See also timeline of scientific discoveries, timeline of technological discoveries, list of timelines of science and technology, list of famous experiments.2nd… …   Wikipedia

  • Loopholes in Bell test experiments — In Bell test experiments, there may be experimental problems that affect the validity of the experimental findings. The term Loopholes is frequently used to denote these problems. See the page on Bell s theorem for the theoretical background to… …   Wikipedia

  • Multifactor design of experiments software — Software that is used for designing factorial experiments plays an important role in scientific experiments generally and represents a route to the implementation of design of experiments procedures that derive from statistical and combinatoric… …   Wikipedia

  • Bell test experiments — The Bell test experiments serve to investigate the validity of the entanglement effect in quantum mechanics by using some kind of Bell inequality. John Bell published the first inequality of this kind in his paper On the Einstein Podolsky Rosen… …   Wikipedia

  • Serial Experiments Lain — DVD box set of Serial Experiments Lain Genre …   Wikipedia

  • Design of experiments — In general usage, design of experiments (DOE) or experimental design is the design of any information gathering exercises where variation is present, whether under the full control of the experimenter or not. However, in statistics, these terms… …   Wikipedia

  • List of experiments from Lilo & Stitch — Kixx redirects here. For the soccer team, see Philadelphia Kixx. Image of experiment 626, also known as Stitch. The most popular of the experiments. This is a list of experiments from the Disney animated Lilo Stitch franchise, a series of… …   Wikipedia

  • Cosmic microwave background experiments — [ Cosmic background (CMB) temperature on the celestial sphere as determined with the COBE satellite, (top) uncorrected, (middle) corrected for the dipole term due to our peculiar velocity, (bottom) corrected for contributions from the dipole term …   Wikipedia

  • Asch conformity experiments — The Asch conformity experiments were a series of studies published in the 1950s that demonstrated the power of conformity in groups. These are also known as the Asch Paradigm. Contents 1 Introduction 2 Method 3 Results 4 …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»